Dietary Supplementation with Macronutrients and Vitamins to Prevent and Slow the Progression of Alzheimer's Disease: A Comprehensive Review
Macronutrients, Vitamins and Alzheimer's Disease
DOI:
https://doi.org/10.5281/zenodo.15311739Keywords:
Alzheimer's disease, nutrition, macronutrients, prevention, vitaminsAbstract
Alois Alzheimer, in 1901, first described Alzheimer's Disease, a progressive neurological disorder that stands as the leading cause of dementia. Its prevalence is alarmingly escalating globally, correlating with increased life expectancies. Current treatments for Alzheimer's Disease are limited, with available medications being expensive and often accompanied by adverse health effects. This necessitates the exploration of natural, readily accessible, and practical therapeutic approaches to both prevent and decelerate the disease's progression. Dietary awareness emerges as a significant natural intervention. Recent research has increasingly focused on the link between nutrition and Alzheimer's Disease, demonstrating a strong correlation between dietary patterns and the disease's development. A well-balanced, sustainable diet, rich in essential macronutrients (proteins, carbohydrates, and fats) and supplemented with vital vitamins, holds potential in preventing Alzheimer's onset in healthy individuals and significantly slowing its advancement in diagnosed patients. This review aims to analyze current research on the impact of macronutrients and vitamins in mitigating Alzheimer's Disease.
References
1. Parle M, Balhara P, Kaura S. The mystery and history of Alzheimer's disease. Int J Pharm Sci & Res. 2023;14:3231-7.
2. Cipriani G, Dolciotti C, Picchi L, Bonuccelli U. Alzheimer and his disease: a brief history. Neurological Sciences. 2011;32:275-9.
3. Nitrini R. The past, present and future of Alzheimer's disease–part 1: the past. Arquivos de Neuro-psiquiatria. 2023;81(12):1070-6.
4. Bick KL. The early story of Alzheimer's disease. (No Title). 1987.
5. Casaletto KB, Nichols E, Aslanyan V, Simone SM, Rabin JS, La Joie R, et al. Sex-specific effects of microglial activation on Alzheimer’s disease proteinopathy in older adults. Brain. 2022;145(10):3536-45.
6. Sadigh-Eteghad S, Sabermarouf B, Majdi A, Talebi M, Farhoudi M, Mahmoudi J. Amyloid-Beta: A Crucial Factor in Alzheimer's Disease. Medical Principles and Practice. 2014;24(1):1-10.
7. De la Monte SM, Wands JR. Alzheimer's disease is type 3 diabetes—evidence reviewed. Journal of diabetes science and technology. 2008;2(6):1101-13.
8. Kciuk M, Kruczkowska W, Gałęziewska J, Wanke K, Kałuzińska-Kołat Ż, Aleksandrowicz M, et al. Alzheimer’s Disease as Type 3 Diabetes: Understanding the Link and Implications. International Journal of Molecular Sciences. 2024;25(22):11955.
9. De la Monte SM. Type 3 diabetes is sporadic Alzheimer׳s disease: Mini-review. European Neuropsychopharmacology. 2014;24(12):1954-60.
10. Casey DA, Antimisiaris D, O'Brien J. Drugs for Alzheimer's disease: are they effective? P & T : a peer-reviewed journal for formulary management. 2010;35(4):208-11.
11. Pistollato F, Iglesias RC, Ruiz R, Aparicio S, Crespo J, Lopez LD, et al. Nutritional patterns associated with the maintenance of neurocognitive functions and the risk of dementia and Alzheimer’s disease: A focus on human studies. Pharmacological Research. 2018;131:32-43.
12. Dauncey MJ. Nutrition, the brain and cognitive decline: insights from epigenetics. European Journal of Clinical Nutrition. 2014;68(11):1179-85.
13. Hirschberg S, Gisevius B, Duscha A, Haghikia A. Implications of Diet and The Gut Microbiome in Neuroinflammatory and Neurodegenerative Diseases. International Journal of Molecular Sciences. 2019;20(12):3109.
14. Popa-Wagner A, Dumitrascu DI, Capitanescu B, Petcu EB, Surugiu R, Fang W-H, et al. Dietary habits, lifestyle factors and neurodegenerative diseases. Neural Regeneration Research. 2020;15(3).
15. Barone E, Di Domenico F, Perluigi M, Butterfield DA. The interplay among oxidative stress, brain insulin resistance and AMPK dysfunction contribute to neurodegeneration in type 2 diabetes and Alzheimer disease. Free Radical Biology and Medicine. 2021;176:16-33.
16. Binosha Fernando WMAD, Gupta VB, Jayasena V, Brennan CS, Martins RN. Carbohydrate and Protein Metabolism: Influences on Cognition and Alzheimer's Disease. Neurodegeneration and Alzheimer's Disease2019. p. 149-87.
17. Seneff S, Wainwright G, Mascitelli L. Nutrition and Alzheimer's disease: The detrimental role of a high carbohydrate diet. European Journal of Internal Medicine. 2011;22(2):134-40.
18. Taylor MK, Sullivan DK, Morris JK, Vidoni ED, Honea RA, Mahnken JD, et al. High glycemic diet is related to brain amyloid accumulation over one year in preclinical Alzheimer's disease. Frontiers in Nutrition. 2021;8:741534.
19. Fuentes E, Venegas B, Muñoz-Arenas G, Moran C, Vazquez-Roque RA, Flores G, et al. High-carbohydrate and fat diet consumption causes metabolic deterioration, neuronal damage, and loss of recognition memory in rats. Journal of Chemical Neuroanatomy. 2023;129:102237.
20. O'Neill B, Raggi P. The ketogenic diet: Pros and cons. Atherosclerosis. 2020;292:119-26.
21. Zarnowska IM. Therapeutic Use of the Ketogenic Diet in Refractory Epilepsy: What We Know and What Still Needs to Be Learned. Nutrients. 2020;12(9):2616.
22. Sondhi V, Sharma S. Non-Pharmacological and Non-Surgical Treatment of Refractory Childhood Epilepsy. The Indian Journal of Pediatrics. 2020;87(12):1062-9.
23. Schoeler NE, Leu C, Balestrini S, Mudge JM, Steward CA, Frankish A, et al. Genome‐wide association study: Exploring the genetic basis for responsiveness to ketogenic dietary therapies for drug‐resistant epilepsy. Epilepsia. 2018;59(8):1557-66.
24. Kverneland M, Molteberg E, Haavardsholm KC, Pedersen S, Ramm-Pettersen A, Nakken KO. Diettbehandling av epilepsi. Tidsskrift for Den norske legeforening. 2017.
25. Mayung C. Efektivitas Diet Ketogenik dalam Penurunan Frekuensi Kejang pada Anak Dengan Epilepsi Resisten Obat. Termometer: Jurnal Ilmiah Ilmu Kesehatan dan Kedokteran. 2023;1(1):43-55.
26. Saputra DH. Peran Diet Ketogenik dalam Tata Laksana Epilepsi. Cermin Dunia Kedokteran. 2022;49(11):629-34.
27. He F, Ye L, Wang L, Zhou J, Shao X, Miao P, et al. Ketogenic diet therapy leads to antiseizure medication reduction in children and adults with drug-resistant epilepsy. CNS Neuroscience & Therapeutics. 2024;30(7):e14854.
28. Taylor MK, Sullivan DK, Mahnken JD, Burns JM, Swerdlow RH. Feasibility and efficacy data from a ketogenic diet intervention in Alzheimer's disease. Alzheimer's & Dementia: Translational Research & Clinical Interventions. 2018;4:28-36.
29. Lusardi TA, Akula KK, Coffman SQ, Ruskin DN, Masino SA, Boison D. Ketogenic diet prevents epileptogenesis and disease progression in adult mice and rats. Neuropharmacology. 2015;99:500-9.
30. Shaafi S, Najmi S, Aliasgharpour H, Mahmoudi J, Sadigh-Etemad S, Farhoudi M, et al. The efficacy of the ketogenic diet on motor functions in Parkinson's disease: A rat model. Iranian journal of neurology. 2016;15(2):63-9.
31. Yüzgüleç M, Korkmaz ND, Elibol B. Effects of Ketogenic Diet on Rat Model of Sporadic Alzheimer's Disease. Bezmialem Science. 2022;10.
32. Lin C, Wang S, Xie J, Zhu J, Xu J, Liu K, et al. Ketogenic diet and β-Hydroxybutyrate alleviate ischemic brain injury in mice via an IRAKM-dependent pathway. European Journal of Pharmacology. 2023;955:175933.
33. Keys A, Mienotti A, Karvonen MJ, Aravanis C, Blackburn H, Buzina R, et al. The diet and 15-year death rate in the seven countries study. American journal of epidemiology. 1986;124(6):903-15.
34. Bach-Faig A, Berry EM, Lairon D, Reguant J, Trichopoulou A, Dernini S, et al. Mediterranean diet pyramid today. Science and cultural updates. Public Health Nutrition. 2011;14(12A):2274-84.
35. Guasch-Ferré M, Willett WC. The Mediterranean diet and health: a comprehensive overview. Journal of Internal Medicine. 2021;290(3):549-66.
36. Muscogiuri G, Verde L, Sulu C, Katsiki N, Hassapidou M, Frias-Toral E, et al. Mediterranean Diet and Obesity-related Disorders: What is the Evidence? Current Obesity Reports. 2022;11(4):287-304.
37. Ballarini T, Melo van Lent D, Brunner J, Schröder A, Wolfsgruber S, Altenstein S, et al. Mediterranean Diet, Alzheimer Disease Biomarkers, and Brain Atrophy in Old Age. Neurology. 2021;96(24):e2920-e32.
38. Moustafa B, Trifan G, Isasi CR, Lipton RB, Sotres-Alvarez D, Cai J, et al. Association of Mediterranean Diet With Cognitive Decline Among Diverse Hispanic or Latino Adults From the Hispanic Community Health Study/Study of Latinos. JAMA Network Open. 2022;5(7):e2221982-e.
39. Lane MA, Bailey SJ. Role of retinoid signalling in the adult brain. Progress in neurobiology. 2005;75(4):275-93.
40. Bourdel‐Marchasson I, Delmas‐Beauvieux MC, Peuchant E, Richard‐Harston S, Decamps A, Reignier B, et al. Antioxidant defences and oxidative stress markers in erythrocytes and plasma from normally nourished elderly Alzheimer patients. Age and Ageing. 2001;30(3):235-41.
41. Rinaldi P, Polidori MC, Metastasio A, Mariani E, Mattioli P, Cherubini A, et al. Plasma antioxidants are similarly depleted in mild cognitive impairment and in Alzheimer’s disease. Neurobiology of Aging. 2003;24(7):915-9.
42. Corcoran JPT, So PL, Maden M. Disruption of the retinoid signalling pathway causes a deposition of amyloid β in the adult rat brain. European Journal of Neuroscience. 2004;20(4):896-902.
43. Ding Y, Qiao A, Wang Z, Goodwin JS, Lee E-S, Block ML, et al. Retinoic acid attenuates β-amyloid deposition and rescues memory deficits in an Alzheimer's disease transgenic mouse model. Journal of Neuroscience. 2008;28(45):11622-34.
44. Flicker L, Martins RN, Thomas J, Acres J, Taddei K, Vasikaran SD, et al. B-vitamins reduce plasma levels of beta amyloid. Neurobiology of Aging. 2008;29(2):303-5.
45. Wang Z, Zhu W, Xing Y, Jia J, Tang Y. B vitamins and prevention of cognitive decline and incident dementia: a systematic review and meta-analysis. Nutrition Reviews. 2021;80(4):931-49.
46. Ma F, Zhou X, Li Q, Zhao J, Song A, An P, et al. Effects of folic acid and vitamin B12, alone and in combination on cognitive function and inflammatory factors in the elderly with mild cognitive impairment: a single-blind experimental design. Current Alzheimer Research. 2019;16(7):622-32.
47. Guo J, Ni S, Li Q, Wang J-Z, Yang Y. Folate/Vitamin B Alleviates Hyperhomocysteinemia-Induced Alzheimer-Like Pathologies in Rat Retina. Neuroscience Bulletin. 2019;35(2):325-35.
48. An Y, Feng L, Zhang X, Wang Y, Wang Y, Tao L, et al. Dietary intakes and biomarker patterns of folate, vitamin B 6, and vitamin B 12 can be associated with cognitive impairment by hypermethylation of redox-related genes NUDT15 and TXNRD1. Clinical epigenetics. 2019;11:1-19.
49. Hamid M, Mansoor S, Amber S, Zahid S. A quantitative meta-analysis of vitamin C in the pathophysiology of Alzheimer’s disease. Frontiers in aging neuroscience. 2022;14:970263.
50. Monacelli F, Acquarone E, Giannotti C, Borghi R, Nencioni A. Vitamin C, Aging and Alzheimer’s Disease. Nutrients. 2017;9(7):670.
51. Han Q-q, Shen T-t, Wang F, Wu P-f, Chen J-g. Preventive and Therapeutic Potential of Vitamin C in Mental Disorders. Current Medical Science. 2018;38(1):1-10.
52. Balcı C, Toktaş N. D Vitamini Sentezi, Metabolizmasi Ve Sağlik Üzerine Etkileri. Gazi Sağlık Bilimleri Dergisi. 2021;6(1):34-47.
53. Gombash SE, Lee PW, Sawdai E, Lovett-Racke AE. Vitamin D as a risk factor for multiple sclerosis: immunoregulatory or neuroprotective? Frontiers in neurology. 2022;13:796933.
54. Taylor SN. Calcium, magnesium, phosphorus, and vitamin D. Nutritional care of preterm infants. 2021;122:122-39.
55. De la Guía-Galipienso F, Martínez-Ferran M, Vallecillo N, Lavie CJ, Sanchis-Gomar F, Pareja-Galeano H. Vitamin D and cardiovascular health. Clinical Nutrition. 2021;40(5):2946-57.
56. Kumar A, Verma A, Chaurasia RN. Vitamin D and inflammatory cytokines association in mild cognitive impaired subjects. Neuroscience Letters. 2023;795:137044.
57. Annweiler C, Beauchet O. Vitamin D-Mentia: Randomized Clinical Trials Should Be the Next Step. Neuroepidemiology. 2011;37(3-4):249-58.
58. McCann JC, Ames BN. Is there convincing biological or behavioral evidence linking vitamin D deficiency to brain dysfunction? The FASEB Journal. 2008;22(4):982-1001.
59. Eyles DW, Burne TH, McGrath JJ. Vitamin D, effects on brain development, adult brain function and the links between low levels of vitamin D and neuropsychiatric disease. Frontiers in neuroendocrinology. 2013;34(1):47-64.
60. Mizwicki MT, Menegaz D, Zhang J, Barrientos-Durán A, Tse S, Cashman JR, et al. Genomic and Nongenomic Signaling Induced by 1α,25(OH) 2-Vitamin D 3 Promotes the Recovery of Amyloid-β Phagocytosis by Alzheimer's Disease Macrophages. Journal of Alzheimer's Disease. 2012;29:51-62.
61. Farina N, Llewellyn D, Isaac MGEKN, Tabet N. Vitamin E for Alzheimer's dementia and mild cognitive impairment. Cochrane database of systematic reviews. 2017(1).
62. Zhao R, Han X, Zhang H, Liu J, Zhang M, Zhao W, et al. Association of vitamin E intake in diet and supplements with risk of dementia: A meta-analysis. Frontiers in Aging Neuroscience. 2022;14:955878.
63. Browne D, McGuinness B, Woodside JV, McKay GJ. Vitamin E and Alzheimer’s disease: what do we know so far? Clinical Interventions in Aging. 2019;14(null):1303-17.
64. Presse N, Shatenstein B, Kergoat M-J, Ferland G. Low Vitamin K Intakes in Community-Dwelling Elders at an Early Stage of Alzheimer's Disease. Journal of the American Dietetic Association. 2008;108(12):2095-9.
65. Denisova NA, Booth SL. Vitamin K and sphingolipid metabolism: evidence to date. Nutrition reviews. 2005;63(4):111-21.
66. Emekli-Alturfan E, Alturfan AA. The emerging relationship between vitamin K and neurodegenerative diseases: a review of current evidence. Molecular Biology Reports. 2023;50(1):815-28.

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Murat KÖSEDAĞ

This work is licensed under a Creative Commons Attribution 4.0 International License.